[20]Normal probability density

Normal probability density function

The score on a test have a mean of 50 and a standard deviation of 5. Assume the variable is normally distributed.

(a)If a personnel manager wishes to select from the top 10% of applicants who take the test, find the cutoff score.

(b)What is the probability that a randomly selected applicant will score between 40 and 45.

Standard Normal Distribution Table:

http://i.imgur.com/QYB4asD.png

1 個解答

評分
  • 7 年 前
    最佳解答

    (a) Let X ~ N(50,5^2), Z ~ N(0,1)

    Let P(Z < k) = 0.9, where k is a constant

    Since P(Z < 1.28) = 0.8997 and P(Z < 1.29) = 0.9015,

    1.28 < k < 1.29

    By linear extrapolation,

    (P(Z < k) - P(Z < 1.28)/(k-1.28) = (P(Z < 1.29) - P(Z < 1.28)/(1.29-1.28)

    (0.9-0.8997)/(k-1.28) = (0.9015-0.8997)/0.01

    k-1.28 = 0.0003/0.18 = 1/600

    k = 1.28+1/600

    Therefore P(Z < 1.28+1/600) = 0.9

    P(X < (1.28+1/600)*5+50) = 0.9

    Cutoff score = (1.28+1/600)*5+50 = 56.4 (corr. to 3 sig.fig)

    (b) The required probability

    = P(40 < X < 45)

    = P((40-50)/5 < Z < (45-50)/5)

    = P(-2 < Z < -1)

    = P(Z < -1) - P(Z < -2)

    = 1 - P(Z < 1) - (1 - P(Z < 2))

    = P(Z < 2) - P(Z < 1)

    = 0.9772 - 0.8413

    = 0.1359

    • 登入以回覆解答
還有問題嗎?立即提問即可得到解答。