Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
Critical Points problem of Calculus
Find the critical points and determine the type of critical point:
y = e^x + sinx
1 個解答
- 小儒Lv 51 十年前最愛解答
y = e^x + sin x
y' = e^x + cos x
For x≧0, we should note that e^x is always greater than cos x, implying y is monotonic , i.e. y has no critical point for x≧0
For x<0, 0 < e^x < 1, monotonic and -1 < cos x < 1, periodic. Thus y' cuts through x-axis occasionally. So all the solutions for x to the equation e^x + cos x = 0 are the critical points. They are all stationary points.
(In fact, e^x is so small that can be neglected and y' ≒ cos x. A close estimation to the critical points are x ≒ -pi/2, -3pi/2, -5pi/2 ......)
Hope the above information helps =)
By 小儒